
Uniswap Foundation
Staking Infrastructure
Security Assessment (Summary Report)

February 23, 2024

Prepared for:

Erin Koen
Uniswap Foundation

Prepared by: Richie Humphrey and Robert Schneider



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Uniswap
Foundation under the terms of the project statement of work and has been made public at
Uniswap Foundation’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Automated Testing 6
Codebase Maturity Evaluation 10
Summary of Findings 12
A. Vulnerability Categories 13
B. Code Maturity Categories 15
C. Code Quality Recommendations 17

Trail of Bits 3 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



Project Summary

Contact Information
The following project manager was associated with this project:

Sam Greenup, Project Manager
sam.greenup@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Richie Humphrey, Consultant Robert Schneider, Consultant
richie.humphrey@trailofbits.com robert.schneider@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

February 8, 2024 Pre-project kickoff call

February 20, 2024 Delivery of report draft

February 20, 2024 Report readout meeting

February 23, 2024 Delivery of summary report

Trail of Bits 4 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



Executive Summary

Engagement Overview
Uniswap Foundation engaged Trail of Bits to review the security of the Unistaker protocol,
which is a system for staking governance tokens and distributing rewards. A team of two
consultants conducted the review from February 12 to February 16, 2024, for a total of two
engineer-weeks of effort. Our testing efforts focused on the pools and related contracts.
With full access to the source code and documentation, we performed static and dynamic
testing, using automated and manual processes.

Observations and Impact
The Unistaker contracts are well-designed, with a clear focus on security and simplicity.
The code quality is high, with most functions serving a singular purpose and the presence
of comprehensive NatSpec comments throughout the codebase.

The test suite implements fuzzing, providing more comprehensive coverage than unit tests
alone. Our mutation testing indicates that the current tests have excellent coverage.
However, there is a lack of stateful invariant tests. Such tests could have identified issues
like TOB-UNIFEE-1, which we found using Echidna.

The protocol includes an interesting permissionless mechanism for collecting fees from
various pools, converting them to the reward token, and sending them to the staking
contract. Outsourcing this process reduces the complexity of the contract and pushes the
associated risks onto an MEV searcher or other fee claimer.

The project currently lacks any external documentation. User-facing documentation is
necessary for stakers, and developer documentation is helpful for integrators building on
Uniswap.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Uniswap Foundation take the following steps:

● Remediate the finding disclosed in this report. There is one finding that should
be considered for remediation, TOB-UNIFEE-1.

● Enhance external documentation. Create technical documentation for developers
and integrators, as well as user-facing documentation to educate and inform on the
staking contract.

● Enhance testing. Consider adding invariant tests to the current test suites (see
appendix C) to ensure that important system properties hold. Additionally, if future

Trail of Bits 5 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

https://github.com/uniswapfoundation/scopelift/issues/59
https://github.com/uniswapfoundation/scopelift/issues/59


development is planned, consider incorporating mutation testing to ensure
maintaining the highest-quality tests.

Trail of Bits 6 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description

slither-mutate A static analysis framework that can statically verify algebraic relationships
between Solidity variables

Echidna A smart contract fuzzer that can rapidly test security properties via
malicious, coverage-guided test case generation

We also used Slither for static analysis of the codebase, but it did not identify any security
issues.

Test Results
The results of this focused testing are detailed below.

UniStaker.sol
This contract is used to stake governance tokens and distribute reward tokens. We
developed a stateful invariant testing harness for the contracts to be used with Echidna.
Aside from the property reported in TOB-UNIFEE-1, all other properties held during a
testing session that completed over 4,000,000 runs using a sequence length of 350.

Property Tool Result

1. The contract’s totalStaked variable is equal to the sum of
all deposits less the sum of all withdrawals.

Echidna Passed

2. The sum of the governance token balances of all the
surrogate contracts is equal to the sum of all deposits less the
sum of all withdrawals.

Echidna Passed

3. The sum of all users’ depositorTotalStaked amounts is Echidna Passed

Trail of Bits 7 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

https://github.com/crytic/slither/tree/dev/slither/tools/mutator
https://github.com/trailofbits/echidna
https://github.com/crytic/slither/tree/dev/slither/tools/mutator
https://github.com/uniswapfoundation/scopelift/issues/59


equal to the value of totalStaked.

4. The sum of all users’ deposits balances is equal to the sum
of all deposits less the sum of all withdrawals.

Echidna Passed

5. The sum of the amounts delegated to delagatees is equal to
the contract’s totalStaked variable.

Echidna Passed

6. The sum of all amounts applied to beneficiaries is equal to
the contract’s totalStaked variable.

Echidna Passed

7. The sum of all beneficiaries’ earningsPower amounts is
equal to the sum of all deposits less the sum of all withdrawals.

Echidna Passed

9. The sum of the increases in beneficiaries’ reward token
balances is equal to the rewards distributed by the system.

Echidna Passed

10. The sum of the increases in beneficiaries’ reward token
balances plus the reward token balance of the UniStaker
contract is equal to the sum of all rewards notified, plus the
sum of all reward token donations, less the sum of rewards
claimed, less the sum of all rewards not transferred in during
reward notification

Echidna Passed

11. The reward token balance is greater than or equal to the
remaining reward payable.

Echidna TOB-UNIFEE-1

12. The UniStaker contract’s reward token balance is equal to
the sum of all rewards notified, plus the sum of all reward
token donations, less the sum of rewards claimed, less the
sum of all rewards not transferred in during reward
notification

Echidna Passed

13. The lastCheckpointTime variable is greater than or
equal to the previous value.

Echidna Passed

14. The rewardPerTokenAccumulatedCheckpoint amount
is greater than or equal to the previous amount.

Echidna Passed

Trail of Bits 8 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

https://github.com/uniswapfoundation/scopelift/issues/59


slither-mutate: The following table displays the portion of each type of mutant for
which all unit tests passed. The presence of valid mutants indicates that there are gaps in
test coverage because the test suite did not catch the introduced change.

● Uncaught revert mutants replace a given expression with a revert statement and
indicate that the line is not executed during testing.

● Uncaught comment mutants comment out a given expression and indicate that the
effects of this line are not checked by any assertions.

● Uncaught tweak mutants indicate that the expression being executed features edge
cases that are not covered by the test suite.

The scopelift/src subdirectory is the root for all target paths listed below. Targets that
are out of scope (e.g., governance contracts, timelock, Uniswap pools) or that produced
zero analyzed mutants (e.g., interfaces) were omitted from mutation testing analysis.

Trail of Bits 9 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

Target Uncaught
Reverts

Uncaught
Comments

Uncaught
Tweaks

UniStaker.sol 0% 0% 10%

V3FactoryOwner.sol 0% 0% 10%

DelegationSurrogate.sol 0% 0% 0%



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The codebase does not rely heavily on arithmetic. The
tests appear to cover all significant operations. The only
rounding issue we observed was a 1 wei difference when
dividing rewards among recipients, which is unavoidable
due to fixed-point math. The rounding we observed was
always in favor of the protocol, so no free tokens were
given out.

Satisfactory

Auditing All changes to state variables and critical operations
correctly generate events. However, the event system
could be improved with the use of a technical
specification and better documentation.

Currently, there is no incident response plan in place,
although it is planned for the future.

Moderate

Authentication /
Access Controls

The access controls in place are adequate. The system
could be improved by documenting the list of privileged
actors and description of their roles. Also, we
recommend using a two-step process for changing
ownership (see the code quality appendix).

Satisfactory

Complexity
Management

The contracts are written with emphasis on sustainability
and simplicity. The functions are single-purpose with little
branching and low cyclomatic complexity.

The protocol includes a novel mechanism for collecting
fees and sending them to the staking contract that offers
an incentive for this work to be done by outside actors,

Satisfactory

Trail of Bits 10 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



thereby removing the associated complexity.

Decentralization The contracts are not upgradeable. Ownership is a
timelock contract. Privileged actors are not able to
unilaterally move funds out of the contract. Critical
configuration parameters are immutable once deployed.

Satisfactory

Documentation The NatSpec is mostly complete for all external functions,
and there are helpful inline comments throughout.
However, there currently is no external documentation
for users or integrators.

Additionally, some user-facing documentation does not
identify the risks and nuances of the staking contract,
which is important.

Technical developer documentation would also be
helpful for integrators or MEV searchers interested in
collecting fees.

Weak

Transaction
Ordering Risks

The developers identified one low-risk permit
front-running issue during the course of the audit that
we’ve mentioned in the code quality appendix.

Satisfactory

Low-Level
Manipulation

No low-level manipulation is used in this codebase. Not
Applicable

Testing and
Verification

The code includes a comprehensive fuzz-testing suite
with close to 100% code coverage. Our mutation testing
also confirmed that the tests have excellent coverage.

We did note a lack of stateful invariant tests. Such tests
could have identified issues like TOB-UNIFEE-1, which we
found using Echidna.

Moderate

Trail of Bits 11 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

https://github.com/uniswapfoundation/scopelift/issues/59


Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 notifyRewardAmount() can be called without
transferring tokens

Data
Validation

Medium

Trail of Bits 12 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment

https://github.com/uniswapfoundation/scopelift/issues/59
https://github.com/uniswapfoundation/scopelift/issues/59


A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 13 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 14 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Transaction
Ordering

The system’s resistance to transaction-ordering attacks

Trail of Bits 15 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 16 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment



C. Code Quality Recommendations

We recommend considering the following recommendations to improve code quality.

● Permit front-running

During the review, the Uniswap development team alerted us to a possible issue
related to the use of permit in the permitAndStake and permitAndStakeMore
functions. The fundamental issue is that someone could front-run the call to
permit, which would cause these functions to revert. We agree with the team’s
suggested mitigation: to wrap each call to permit in a try/catch statement.

● Implement ownable two-step

Consider using a two-step process for transferring ownership of the
V3FactoryOwner contract.

● Add zero address checks

Consider adding a check for zero address when setting REWARD_RECEIVER in the
constructor of V3FactoryOwner.

● Add missing return value

As a convenience to integrators, consider having the UniStaker.claimRewards
function return the amount of rewards distributed.

● Add complete NatSpec

Consider adding complete NatSpec for all external functions. We found these issues
using natspec-smells.

● UniStaker:lastTimeRewardDistributed src/UniStaker.sol:219
@return missing for unnamed

● UniStaker:rewardPerTokenAccumulated src/UniStaker.sol:227
@return missing for unnamed

● UniStaker:unclaimedReward src/UniStaker.sol:238
@param _beneficiary is missing
@return missing for unnamed

Trail of Bits 17 Uniswap Foundation Staking Infrastructure
PUBLIC Security Assessment


